CURSO/GUÍA PRÁCTICA DE FACHADAS VENTILADAS Y TEJADOS VENTILADOS

>Para aprender, practicar.
>Para enseñar, dar soluciones.
>Para progresar, luchar.
Formación inmobiliaria práctica > Sólo cuentan los resultados
Para aprender, practicar.
Para enseñar, dar soluciones.
Para progresar, luchar.
Formación inmobiliaria práctica

¿QUÉ APRENDERÁ? ________________________________ 9
PARTE PRIMERA. _________________________________ 10
¿Qué es una fachada ventilada? ____________________ 10
Capítulo 1. ¿Qué es una fachada ventilada? __________ 10
1. ¿Qué es una fachada ventilada? ____________________ 10
2. La fachada como transmisor térmico de la presión del viento sobre un edificio. __ 11
3. Ventajas de una fachada ventilada. ____________ 11
4. Desventajas de una fachada ventilada. __________ 13
TALLER DE TRABAJO ____________________________ 15
Evolución histórica de la fachada ventilada. __________ 15
TALLER DE TRABAJO ____________________________ 50
Introducción a las fachadas ventiladas. ________________________________ 50
Ventajas e inconvenientes de los sistemas con cámara ventilada ___________ 50
El aislamiento higrotérmico. ___________________________ 50
El aislamiento acústico. _____________________________ 50
Barrera contra el agua. ______________________________ 50
Materiales. ___ 50
Partes de una fachada ventilada. ______________________ 50
Soporte cerramiento. __________________________________ 50
Soporte estructural. ___________________________________ 50
Aislamiento. __ 50
Fijaciones. __ 50
Proceso de ejecución. __________________________________ 50
Clases de fachadas ventiladas. _________________________ 50
Tipos de anclaje. ______________________________________ 50
Cálculo de un aplacado de fachada. _____________________ 50
PARTE SEGUNDA ___ 152
¿Para qué sirve una fachada ventilada? ________________ 152
Capítulo 2. El aislamiento térmico de la fachada ventilada. __________ 152
1. El aislamiento térmico de la fachada ventilada. __________ 152
2. El aislamiento acústico de la fachada ventilada. __________ 154
3. Protección contra lluvia y humedades. Pantallas contra lluvia. _______ 154
TALLER DE TRABAJO ____________________________ 158
Aislamiento térmico y otras ventajas de las fachadas ventiladas. __________ 158
Resistencia a la intemperie ____________________________ 158
Flexibilidad y adaptabilidad ___________________________ 158
Rapidez en la instalación _____________________________ 158
Incombustible __ 158
Eficiencia energética ___________________________________ 158
Confort acústico ______________________________________ 158
Ensaios técnicos de resistencia, lluvia, viento y fijación. ___________ 158
TALLER DE TRABAJO ____________________________ 167
Comparativa gráfica del impacto de radiación solar y del impacto del viento y la lluvia sobre las fachadas de un edificio (fachada ordinaria/fachada ventilada). _ 167

TALLER DE TRABAJO ___________________________ 171
Lana mineral como aislamiento en las fachadas ventiladas. ___________________________ 171

Componentes lana mineral __________________________ 171
Altas prestaciones acústicas 171
Hidro-repelente 171
Reacción al fuego 171

Membrana impermeable __________________________ 171
Resistente al agua de lluvia 171
Protección a los rayos ultravioleta (UV) 171
Reacción al fuego 171
Transpirable al vapor de agua (Sd= 0,02 m) 171

TALLER DE TRABAJO ___________________________ 186
Procesos de construcción de fachadas ventiladas con fines de aislamiento térmico o rehabilitación de fachadas. ___________________________ 186
Transmitancia térmica. ___________________________ 186

PARTE TERCERA ________________________________ 217
Clases de fachadas ventiladas. ___________________________ 217

Capítulo 3. Clases de fachadas ventiladas. ___________________________ 217
1. Clases de fachadas ventiladas. ___________________________ 217
2. Fachada ventilada con anclaje puntual de fijación química. ___________________________ 217
3. Fachada ventilada con anclaje puntual de fijación mecánica. ___________________________ 220
4. Fachada ventilada con anclaje de fijación mecánica en perfilería. ___________________________ 220
5. Fachada ventilada con anclaje de fijación química y subestructura de aluminio. ___________________________ 222
6. Fachada ventilada con anclaje destalonado. ___________________________ 222

TALLER DE TRABAJO ___________________________ 223
Fachadas ventiladas. Nuevo sistema de fachada ligera passiv ___________________________ 223

TALLER DE TRABAJO ___________________________ 236
Tejados ventilados. Sistema técnico para tejados tectum-pro ___________________________ 236

PARTE CUARTA ________________________________ 267
El Código técnico de la edificación CTE y las fachadas ventiladas. ___________________________ 267

Capítulo 4. El Código técnico de la edificación CTE y las fachadas ventiladas. ___________________________ 267
1. Documento básico DB-HS. Salubridad. DB-HS 1 Protección contra la humedad. ___________ 267
2. DB-HS1 aplicado a fachadas. ___________________________ 317
3. Resistencia a la filtración del revestimiento exterior. ___________________________ 372
4. Juntas de dilatación, barreras impermeables y encuentros en puntos singulares. ___________________________ 374

TALLER DE TRABAJO ___________________________ 377
Ensayo de carga térmica en una fachada ventilada conforme al Código técnico de la edificación CTE DB HE1. ___________________________ 377

TALLER DE TRABAJO ___________________________ 389

>Para aprender, practicar.
>Para enseñar, dar soluciones.
>Para progresar, luchar.
Formación inmobiliaria práctica > Sólo cuentan los resultados
<table>
<thead>
<tr>
<th>Páginas</th>
<th>Contenido</th>
</tr>
</thead>
<tbody>
<tr>
<td>389</td>
<td>Sistemas de aislamiento térmico de fachadas por el exterior (SATE).</td>
</tr>
<tr>
<td>390</td>
<td>1. Exigencias de valores de transmittancia térmica de la envolvente térmica de los edificios en fachadas.</td>
</tr>
<tr>
<td>390</td>
<td>2. Inercia térmica de los cerramientos</td>
</tr>
<tr>
<td>391</td>
<td>3. Puentes térmicos</td>
</tr>
<tr>
<td>392</td>
<td>TALLER DE TRABAJO. Los productos prefabricados de hormigón en el Reglamento europeo de Productos de Construcción 305/2011 (RPC) para los fabricantes de productos prefabricados de hormigón que desde el 1 de julio de 2013 sustituye a la actual Directiva 89/106/CEE</td>
</tr>
<tr>
<td>392</td>
<td>1. Reglamento europeo de Productos de Construcción 305/2011 (RPC) para los fabricantes de productos prefabricados de hormigón</td>
</tr>
<tr>
<td>393</td>
<td>2. Valoración del Ministerio de Industria, Energía y Turismo</td>
</tr>
<tr>
<td>394</td>
<td>Diferencias para los fabricantes de productos de construcción</td>
</tr>
<tr>
<td>396</td>
<td>Diferencias para los organismos notificados (ON)</td>
</tr>
<tr>
<td>397</td>
<td>Diferencias para los actuales organismos autorizados para la concesión del dite y su organización (EOTA)</td>
</tr>
<tr>
<td>397</td>
<td>Diferencias para las autoridades de los estados miembros</td>
</tr>
<tr>
<td>398</td>
<td>Diferencias para los organismos de normalización nacionales y el CEN</td>
</tr>
<tr>
<td>398</td>
<td>Consejos para los técnicos a pie de obra: la idoneidad al uso de los productos con marcado CE</td>
</tr>
<tr>
<td>438</td>
<td>TALLER DE TRABAJO. Esquemas prácticos del Reglamento europeo de Productos de Construcción 305/2011 (RPC) para los fabricantes de productos prefabricados de hormigón que desde el 1 de julio de 2013 sustituye a la actual Directiva 89/106/CEE</td>
</tr>
<tr>
<td>464</td>
<td>TALLER DE TRABAJO. Productos de la construcción para los que el marcado es obligatorio en el Reglamento europeo de Productos de Construcción 305/2011 (RPC) que desde el 1 de julio de 2013 sustituye a la actual Directiva 89/106/CEE</td>
</tr>
<tr>
<td>503</td>
<td>TALLER DE TRABAJO. Marcado en prefabricados de hormigón para muros en el Reglamento europeo de Productos de Construcción 305/2011 (RPC) que desde el 1 de julio de 2013 sustituye a la actual Directiva 89/106/CEE</td>
</tr>
<tr>
<td>578</td>
<td>TALLER DE TRABAJO. La piedra natural y aglomerada en el Reglamento europeo de Productos de Construcción 305/2011 (RPC) que desde el 1 de julio de 2013 sustituye a la actual Directiva 89/106/CEE</td>
</tr>
<tr>
<td>591</td>
<td>TALLER DE TRABAJO Aislamiento de fachadas ventiladas de más de 18 metros.</td>
</tr>
<tr>
<td>594</td>
<td>TALLER DE TRABAJO Planchas de Poliuretano en Fachadas Ventiladas. Características de protección contra el fuego. Ventajas Planchas de PIR.</td>
</tr>
<tr>
<td>616</td>
<td>PARTE QUINTA Materiales de la fachada ventilada. DAU (documento de adecuación al uso) de los materiales de fachadas ventiladas.</td>
</tr>
</tbody>
</table>
Para aprender, practicar.
Para enseñar, dar soluciones.
Para progresar, luchar.
Formación inmobiliaria práctica
> Sólo cuentan los resultados
Capítulo 7. DAU (documento de adecuación al uso) de los materiales utilizados en las fachadas ventiladas. 723

1. DAU (documento de adecuación al uso) de los materiales utilizados en las fachadas ventiladas. 723
2. DAU de fachadas ventiladas cerámicas. DAU 08/050 725
3. DAU de fachadas ventiladas cerámicas. DAU 09 058 753
4. DAU de subestructuras para fachadas ventiladas. Bandejas galvanizadas para el revestimiento exterior. DAU DA 10 059 803

Estructura de una fachada ventilada. 859

Capítulo 8. Estructura de la fachada ventilada. 859

1. Soporte estructural de cerramiento. 859
2. Anclajes. Riesgo de deformabilidad. 859
 a. Anclajes de acero inoxidable. 860
 b. Separadores de placas de cloruro de polivinilo (PVC) 860
 c. Resinas para el anclaje. 860
 d. Casquillos y separadores. 861
e. Grapas de anclaje 861

TALLER DE TRABAJO 863

Vías de propagación del fuego en fachadas ventiladas y de doble piel. 863
- Aislamiento por el exterior y/o paneles de revestimiento 863
- Barreras cortafuego en la cámara 863
- Subestructura de fachada y uniones 863

Capítulo 9. Dimensionamiento de los anclajes de la fachada ventilada. 873

Los planos de despiece. 873

Capítulo 10. Las juntas estructurales de la fachada ventilada. 875

1. Las juntas estructurales de la fachada ventilada 875
2. Compartimentación de la cámara 876

Capítulo 11. Aislamiento. Espesor del aislante. 877

Aislamiento. Espesor del aislante. 877

TALLER DE TRABAJO 879

Sistemas de aislamiento térmico por el exterior (SATE) basados en placas de poliestireno expandido (EPS). Ejemplo. 879

CHECK-LIST 882

1. Control de ejecución de la envolvente en edificación en cubiertas y fachadas. 882
2. Control de ejecución de los cerramientos en edificación 883
3. Control de ejecución de cubiertas planas. 885
4. Control de ejecución de cubiertas inclinadas. 886
5. Control de exteriores de fachadas. 887
6. Control de montajes industrializados de fachadas. Fachadas ventiladas. 889
7. Control de cámaras de aire en fachadas. 890
8. Control de estanqueidad de cerramientos. 891
<table>
<thead>
<tr>
<th>Capítulo 12. Estructura base para fachadas ventiladas.</th>
<th>893</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montaje de la estructura base para fachadas ventiladas.</td>
<td>893</td>
</tr>
<tr>
<td>Capítulo 13. Sustitución de piezas en fachadas ventiladas.</td>
<td>894</td>
</tr>
<tr>
<td>Sustitución de piezas en fachadas ventiladas.</td>
<td>894</td>
</tr>
<tr>
<td>TALLER DE TRABAJO</td>
<td>895</td>
</tr>
<tr>
<td>Cálculo de un aplacado de fachada de piedra natural</td>
<td>895</td>
</tr>
<tr>
<td>TALLER DE TRABAJO</td>
<td>897</td>
</tr>
<tr>
<td>El tamaño de las placas de una fachada ventilada en función del viento.</td>
<td>897</td>
</tr>
<tr>
<td>1. La presión del viento.</td>
<td>898</td>
</tr>
<tr>
<td>2. Las cargas aerodinámicas.</td>
<td>898</td>
</tr>
<tr>
<td>3. El coeficiente de presión neto.</td>
<td>899</td>
</tr>
<tr>
<td>4. Programas de simulación para calcular la presión del viento sobre fachadas ventiladas.</td>
<td>900</td>
</tr>
<tr>
<td>TALLER DE TRABAJO</td>
<td>902</td>
</tr>
<tr>
<td>Celosías.</td>
<td>902</td>
</tr>
<tr>
<td>1. Concepto de celosía en la ingeniería estructural edificatoria.</td>
<td>902</td>
</tr>
<tr>
<td>2. Clases de celosías.</td>
<td>902</td>
</tr>
<tr>
<td>Celosías Planas</td>
<td>902</td>
</tr>
<tr>
<td>Celosías complejas</td>
<td>903</td>
</tr>
<tr>
<td>Celosía Long</td>
<td>905</td>
</tr>
<tr>
<td>Celosía Howe</td>
<td>905</td>
</tr>
<tr>
<td>Celosía Pratt</td>
<td>905</td>
</tr>
<tr>
<td>Celosía Warren</td>
<td>906</td>
</tr>
<tr>
<td>3. Cálculos de celosías planas.</td>
<td>907</td>
</tr>
<tr>
<td>4. Celosías en el mercado.</td>
<td>908</td>
</tr>
<tr>
<td>Celosía en aluminio de lamas fijas.</td>
<td>908</td>
</tr>
<tr>
<td>Celosía en aluminio de lamas orientables, fijas o encastradas.</td>
<td>909</td>
</tr>
<tr>
<td>Celosía orientable de grandes palas en acero.</td>
<td>909</td>
</tr>
<tr>
<td>Celosía orientable de grandes palas en acero.</td>
<td>909</td>
</tr>
<tr>
<td>PARTE SEXTA</td>
<td>911</td>
</tr>
<tr>
<td>Control de obra en fachadas ventiladas.</td>
<td>911</td>
</tr>
<tr>
<td>Capítulo 14. Control en la recepción de materiales de obra en fachadas ventiladas.</td>
<td>911</td>
</tr>
<tr>
<td>1. Control en la recepción de las baldosas y materiales. Ensayos.</td>
<td>911</td>
</tr>
<tr>
<td>2. Control de anclajes.</td>
<td>912</td>
</tr>
<tr>
<td>3. Control de bulones, taladros y grapas.</td>
<td>913</td>
</tr>
<tr>
<td>Capítulo 15. Control de calidad de fachadas ventiladas.</td>
<td>915</td>
</tr>
<tr>
<td>1. Dintel, jambas y vierteaguas</td>
<td>915</td>
</tr>
<tr>
<td>2. Zócalos</td>
<td>915</td>
</tr>
<tr>
<td>3. Defectos por mala colocación. Esquinas.</td>
<td>916</td>
</tr>
<tr>
<td>TALLER DE TRABAJO</td>
<td>917</td>
</tr>
<tr>
<td>Daños habituales en fachadas ventiladas.</td>
<td>917</td>
</tr>
</tbody>
</table>
1. Daños habituales en fachadas ventiladas: Filtraciones, humedades y fisuraciones. 917
- No ejecutadas por personal con experiencia en este tipo de soluciones constructivas. 917
- Lesiones y deficiencias 917
- Desprendimiento/levantamiento y o rotura de piezas 917
- Humedades y o filtraciones 917
- Manchas/suciedad y o tonalidad 917
- Humedades por condensación 917
- Fisuras de acabados 917
- Fisuras de origen constructivo 917
- Fisuras y desprendimientos en zonas de emparechado 917

2. Aspectos de materiales y piezas utilizadas en la capa de revestimiento exterior de las fachadas ventiladas. 917
- Placas de laminado compacto a alta presión de resina termoendurecible con fibras de madera. 917
- Paneles de cemento con caras de malla de fibra de vidrio. 917
- Paneles hidrófobos de vidrio, núcleo de yeso y revoco de mortero. 917
- Paneles de lana mineral comprimida con tratamiento y acabado decorativo. 917
- Baldosas cerámicas extruidas o de grés porcelánico. 917
¿QUÉ APRENDERÁ?

➢ El aislamiento térmico de la fachada ventilada.

➢ Procesos de construcción de fachadas ventiladas con fines de aislamiento térmico o rehabilitación de fachadas.

➢ Clases de fachadas ventiladas.

➢ El Código técnico de la edificación CTE y las fachadas ventiladas.

➢ Las fachadas de hormigón arquitectónico.

➢ DAU (documento de adecuación al uso) de los materiales utilizados en las fachada ventiladas.

➢ Control en la recepción de materiales de obra en fachadas ventiladas.
PARTE PRIMERA.

¿Qué es una fachada ventilada?

Capítulo 1. ¿Qué es una fachada ventilada?

1. ¿Qué es una fachada ventilada?